

CHAPTER 1

Introduction

The research described in this paper represents part of an effort at the University
of California at Berkeley to study implementation techniques for Ada'. The project
took advantage of available source code from an Ada compiler donated to Berkeley by
AT&T. This compiler, known as the Ada Breadboard Compiler (ABC) was designed
as a tool to provide a bootstrap for the development of a production Ada compiler at
AT&T [Wet82]. The work at Berkeley was primarily in two areas. One investigation
involved implementing alternative representations for the DIANA abstract data type,
used as the intermediate representation for the Ada programs [Mur84]. The second

" area of investigation, described here, involved implementing an efficient runtime
representation of Ada programs. Both the form and effectiveness of the representation
are described, and comments on the experiences we had implementing the
representation are included. The compiler resulting from this work will hereafter be
called the Berkeley Ada Compiler (BAC).

This paper is organized in the following way. Chapter 1 is a general introduction.
Chapters 2 and 3 recount our implementation experiences with representations of Ada.
Chapter 4 describes the BAC runtime representation. Chapter 5 summarizes
conclusions reached during this project.

1.1. Overview of What was Implemented
Compilers have traditionally been organized into two phases referred to as the

front and back ends. Syntactic and static semantic analyses take place in the front
end, which generally produces as output some intermediate form of the program such
as triples, quads, or trees. The back end has traditionally taken the output of the
front end and produced the target code, which is typically assembler or machine
language. Ideally, the front end can be machine independent, and the back end can be
language independent.

Modern languages have stretched this paradigm because they are so complex.

Furthermore, environment tools have created another use for the intermediate

representation of the program. Most Ada implementations have three distinct phases.
The front end remains machine independent and creates a high level intermediate
form that can be used both by the compiler and other tools in the environment
including debuggers, editor3 and pretty printers. A middle end takes this high level
intermediate form and produces a more primitive intermediate form as its output.
The back end again takes the primitive form and generates the target language. The

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office). ""

2 I7

SS . b,-.'

. 5..,

* 2

n.p ,,plization of mnipcR

Middle
Ed

Ada DIANA IR fiecutable
source mage

Figure 1.1: Block Diagram of the Berkeley Ada Compiler

middle end, which must manipulate both the high and low level forms, may well be
both language and machine dependent and therefore possibly represents the most time
consuming part of retargeting Ada compilers. Figure 1.1 presents a high level diagram
of the BAC design.

Because the available resources were limited, and because Ada contains a large
number of features, we decided from the outset not to implement features we felt
would not be of interest in our research. The three features we chose not to
implement were fixed-point types, derived types, and compilation subunits. As it
turned out, the features we did implement were:

* A full Pascal subset (all Pascal control structures and data types).

* Library and inner packages.

* Static, dynamic, constrained and unconstrained arrays.

• Constrained, unconstrained and variant records.

a All forms of array aggregates and record aggregates.

0 Array slices.

* All Ada built-in operators including "&.

• Parameter passing of all data types and function return values of all data types.

0 Exception handlers and the raise statement2 .

0 Constrained and unconstrained access types.

* All scalar attributes and all array attributes.

.Constraint checking code was not finished.

*.

*I .

3

. The Interface and Named Interface' pragmas.

The features that we were unable to implement for lack of time were: tasking,
generic packages, default subprogram parameters, many pragmas and many
attributes. Also, the I/O packages defined in Chapter 14 of the Ada Language
Reference Manual [DoD83I were not provided, although we created the Named
Interface to facilitate adding them. Representation specification and many of the
implementation dependent features described in chapter 13 of the LRM were also not
implemented. Even though we say features have been implemented, none of the
features has been exhaustively tested. No substantial user community for the compiler
developed because of its unacceptable slowness. The performance of the compiler is
discussed in Chapter 5.

1.2. Introduction to DIANA

Chapter 2 describes the experience we had with the high level representation
DIANA [GWE83], which is a proposed standard intermediate representation for Ada
programs. The DIANA structure is intended to contain information that will be
usable by Ada back ends (which include what is called the middle end). DIANA is an
abstract data type that allows any number of implementations by abstracting out the
interface between the implementation and the user. Although technically the DIANA
form is an abstract data type, it most resembles a graph whose principle arcs form a
tree. The middle end of the BAC traverses the DIANA representation of the Ada
program and generates a tree, the IR of the portable C compiler. The DIANA
representation is a complex one, containing definitions for 202 kinds of nodes and 177
attributes, which are the names of fields within nodes.

Overall our experience using DIANA was an unpleasant one. The
representation's complexity and poor design hampered the development of the
compiler middle end. Furthermore, lack of adequate documentation required much
about the structure of DIANA to be learned tLrough trial and error. Despite the
criticism of DIANA in this report, there is evidence to suggest that production quality
compilers based on DIANA are'possible. Verdix Corporation claims to have an Ada
front end based on DIANA that compiles code at 1500 lines per minute on a VAX-
11/780. If their claim is true, this performance proves that DIANA is not solely
responsible for the current low quality of Ada implementations.

1.3. Introduction to the Portable C Compiler IR
The low level form chosen for use in the BAC is the only intermediate form used

in the portable C compiler. There were several reasons we chose to use the IR. One
reason was that the Berkeley CS community has had a lot of experience with this

representation. Three of the high level languages available in the Berkeley Unix'

- Named Interface was a locally defined pragma to allow different external procedures to implement

subprograms with overloaded names.

. .

4

System (4.2 BSD): C, Fortran 77, and Pascal, use the IR as their intermediate form. .
Consequently, informative documentation on the intermediate form is available
iKes83J. A second reason for using the IR was that another group at Berkeley is
implementing table driven code generators [Hen84]. Because their work is based on
the same IR, there is hope that their tools can be used to retarget the BAC.

As with DIANA, the interface between the middle end and the IR was
abstracted. This abstraction was useful when the need to reimplement the IR arose,
as it did several times. Instead of having to modify 20,000 lines of middle end code at
each reimplementation, only 1500 lines of IR code needed to be changed. A more
complete discussion of our experiences with the IR is included in Chapter 3.

1.4. The Berkeley Ada Runtime Representation

The main purpose of re-implementing the middle end of the AT&T Breadboard
compiler was to study the possibility of an efficient runtime representation of Ada,
especially with respect to types. Because Ada requires runtime constraint checking
and allows unconstrained array and record types, type information at runtime must be
available. The BAC implementation minimizes this representation* by sharing
constant type descriptors among objects of the same constrained type. Package
representation is another issue addressed elegantly in the BAC. By avoiding a display
mechanism and using static links, package references can be done in a conceptually
simple and efficient manner.

Chapter 4 describes in detail the BAC representation of the stack frame, package
frames, runtime types, subprogram parameters and function return values. The BAC
implementation of record and array aggregates is also discussed. In Chapter 5, the
performance of the BAC implementation is discussed along with conclusions drawn
from the experiences of implementing the system.

SUniX is a trademark of AT&T.

.................... *-o

,-

CHAPTER 2

Experiences with DIANA

2.1. Overview

DIANA (an acronym for Descriptive Intermediate Attributed Notation for Ada)
is an abstract data type suggested to be a standard intermediate representation for
Ada implementations. DIANA serves as the connection between the front and back
end of the compiler and as a standard representation usable by environment tools such
as language-based editors, cross-reference generators, debuggers, and pretty printers.

. This chapter describes the suitability of DIANA for these purposes from the
perspective of a DIANA user. The first part of the chapter discusses general
deficiencies in the DIANA design. Next, specific examples of inefficiencies in the

* DIANA representation are given, and DIANA normalizations implemented by the BAC
are described. Finally, important facilities poorly provided by DIANA are outlined.

2.2. DIANA Design Requirements

To qualify as an intermediate representation of Ada usable by environment tools,
DIANA had to fill the following requirements [GWE83 p. 9]:

(1) It had to be an abstract data type that would contain all the information
determined by syntactic and static semantic analysis.

(2) It had to retain enough information that the source could be reconstructed
verbatim 1.

(3) It had to be time and space efficient. Space efficiency includes the efficiency of
the external representation which must be maintained across compilations
without using too much file space. .

(4) It had to provide back end implementors with a representation that was easily
understandable and manipulate.

The last two requirements appears to be an implementation considerations and
not design goals. But one must consider that DIANA is intended to be a standard
representation and if it is designed to aid the development of Ada compilers and tools,
it must not be too inefficient to use for these purposes. The fact that the last two
goals were not the most important goals in the DIANA design had a negative impact

Actually, the greatest aspect of source code reconstructibility left to the discretion of the
implementation was whether or not to retain comments from the source code in the DIANA
representation.

5

tp

on the result.

2.2.1. The Impact of Source ReproducibilityI The most questionable DIANA design goal was reconstructibility of the Ada
source. There is a great deal of importance placed on this goal, even though it
conflicts directly with the goals of usability and space efficiency. Which is more
important, source reproducibility or space efficiency and compiler usability? One can
resolve this question by examining the frequency of use and importance of the
particular tools that require exact source reproducibility. Because the tools in
question: editors, pretty printers, debuggers, etc., can provide a meaningful
representation of a program to the user independent of the original source (i.e. print
the program out in some standard format), the marginal utility of maintaining all the
additional information so the user can see exactly what he typed seems questionable.

The most frequent thing one does with a piece of software is compile it. Software
that works perfectly is repeatedly compiled because interfaces change. In Ada, if a
variable is added to a package specification, then all program units that have a
dependency on that specification need to be recompiled, even if they never access that
variable 2. Ideally, interfaces are frozen early in a project and never change thereafter.
Unfortunately, this rarely happens. And because interfaces change, recompilation
happens again and again to entire working software systems." It is clear that space
efficiency and compiler usability should be high priorities for designers of any
intermediate language representation.

Ignoring the source reproducibility requirement would have drramatically
changed the structure of DIANA. Specific changes are discussed throughout this
chapter. If a user desired it, source information could have been retained by
augmenting the DIANA. The most awkward problem here is that two different
intermediate representations would exist; however, the current alternative is even less
desirable.

2.2.2. The Basis for the DIANA Design
The DIANA design team chose to base DIANA on the Ada Formal Definition

(AFD) [Hong0l. The AFD was an attempt to formalize the static semantics of
preliminary Ada [1ch791. The DIANA designers chose to base DIANA on the AFD so
that the intermediate representation would have meaning and consistency that would
not need to be provided by the DIANA design team independently. Unfortunately,
since the AFD design was discontinued before the final Ada standard [DoD83] was
issued, the AFD does not specify the correct semantics for all Ada language features, .

and hence formal basis for DIANA is incomplete.

s It is possible for a compiler to avoid recompilation through a non-trivial analysis, but this
capability is not required.

a Our compiler was organized into three distinct paw". They all depended on the DIANA interface.
Whenever the DIANA interface changed, perhaps because a code generation attribute was added, each of
the paie had to be recompiled.

"' ." . . ; -:'" ' -" ", t, ' , " """ '' " ' - % '

7

Ideally, the DIANA representation should be a minimal representation that
preserved the analysis of the front end. The creation of this representation requires

two transformations to the source, first from the source to the abstract syntax tree O

(AST) and then from the AST to DIANA by means of decoration 4 . The AFD defines
the structure of the AST, and also defines the semantics of decorating it. Thus the
AFD provides the DIANA designers with answers to questions of the meaning (what
does a particular DIANA structure represent), and consistency (is a particular
representation meaningful). The biggest problem with basing DIANA on the AFD is
that the AFD was not designed for efficiency of representation. Furthermore, it seem
unwise to create a de facto standard representation based on an out-of-date
specification upon which no successful compilers have been written. It seems it would
have been much more prudent to delay the design of DIANA until a number of
successful Ada implementations had been completed.

2.3. The Size of the BAC DIANA Implementation
The BAC DIANA implementation is based on the DIANA for the Ada

Breadboard Compiler designed at AT&T (Qui82]. This implementation was modified
at Berkeley to minimize the size of the representation. Murphy calculated that in the
BAC the DIANA structure for a given Ada program would be 23 times the size of the

source text [Mur84 p. 151. Even with rough calculations, the size of the DIANA
structure can be seen to be large. Assume that the DIANA representation is a binary
tree (a conservative estimate, since most DIANA nodes have more than two children).

Furthermore, assume that the tokens in the source become leaves of the tree. Based
upon these assumptions, there are twice as many nodes in a program's DIANA
representation as there are tokens in the source. Murphy calculated that the average
node size in the BAC DIANA implementation was 35 bytes [Mur84 p. 151. If we
assume two DIANA nodes per source token, the ratio is 70 bytes of DIANA structure
to one source token. If the average source token size is 4 bytes, a source to DIANA
structure expansion factor close to 20 (70/4) is believable.

Just the information to represent source position takes up large amounts of
space. In our implementation, every node has a source position, which is represented
as two 2 byte integers (row number and column number). Assuming again that the
average token size is 4 bytes and that there are two DIANA nodes for every source
token, the space devoted to maintaining source position informnation takes up twice as
much space as the source itself.

The experience with the BAC implementation of DIANA indicates that any
DIANA implementation will be an inefficient representation of the Ada source.
Consider the representation of lists (SEQ-TYPE) in DIANA. Figure 2.la illustrates
the DIANA representation for a list of identifiers in the declaration part of a
subprogram.

The structure of the AST and DIANA are virtually the same. The transformation involves filling
in attributes (decorating) the nodes in the AST.

the trutur oftheAST an als deine th seantcs f deoraingit•Thu th -I

.- . "

..

asIitem ITEM I p] /., --H cdr I l. "

as -list car ITEM 2

cdrr

Figure 2.1a: DIANA Representation of a Declaration List

Subpr-Bod carITEM 1as-item-s IcdrI l"'-

Scar ITEM 2Icd

Figure 2.1b: Simplified DIANA for a Declaration List

In these figures, the darker first name in each node represents the kind of the node.
Fields underneath this represent the various attributes of the node, some of which are
pointers. The car-cdr structure suggests a familiar implementation of lists. In
DIANA, lists are defined as an abstract data type, and so the implementation
suggested by these diagrams is only one possible implementation of many. In the
nodes represented, many of the attributes are not shown (the largest node has 14
attributes) to simplify the figureA.

Notice the ltem.S node in Figure 2.1a. This node has only one attribute,
AS.LIST, which points to the list of declarations. There appears to be no purpose in
making the Item.S node separate instead of placing the list of identifiers in the
SubprgBody node. Why not have the ASITEMS attribute point directly to the list
of identifiers as is represented in Figure 2.1b? This modification would avoid the
overhead of the Item.S node, and all the extra pointers, complexity, etc. In DIANA,
every node whose name ends in .S is just a dummy node that has one attribute,
AS- LIST. This redundancy is clearly non-optimal.

2.4. Useful Normalizations of DIANA
The source reconstructibility goal requires that much of a DIANA structure

remain unnormalized. If the intermediate form represented a canonical form of the
Ada program, the job of retargeting Ada compilers would be much easier because back

end writers would only need to understand and manipulate a single representation of
the Ada source. In an unnormalized DIANA structure, there can exist many different
forms that represent the same semantic meaning, all of which must be individually
recognized and normalized by the back end. Normalization of the DIANA structure
would also reduce the complexity of the representation.

Example 2.1a and 2.1b contain fragments of Ada source that are semantically
equivalent.

z . integer;
y integer.-

Example 2.1a: Declaration Form One

z, y integer.

Example 2.1b: Declaration Form Two

Figure 2.2a illustrates the DIANA representation of Example 2.1a. Note the structure
replication for each variable declaration. The DIANA representation also introduces an
redundant node for every declaration, which is a header telling the type of the
following list. The Var nodes in Figures 2.2a and 2.2b are extraneous. In Figure 2.2b
the DIANA representation of Example 2.1b is presented.

A normalized representation for Examples 2.1a and 2.1b is illustrated in Figure
2.3. In it the Var and Id.S nodes have been completely eliminated. Furthermore,
nodes named Exception, Constant, Subtype, Type, In, Out, In-Out, LPrivate,
Private, and Number could be eliminated from the DIANA definition. Including the
list nodes (ending in .S) and these nodes, more than 25 DIANA node kinds are
extraneous in representing results of syntactic and static semantic analysis.

7

• . . - -. - . - - . .

10

Subprg-Body
8sJiem-s

1tem-9Va, Varjld
as- I istas-id..s .

crId-..S car

as-list cdr

Figure 2.2a: DIANA for Example 2.1a

I

Itesn-S

as lit1a

w~id5s

cari

cdr d_
~Ubp~as-list

Figure 2.2b: DIANA for Example 2.1b

Fiuru23:Nrmalizd DAAfrEapes2l rd2I

as ie._

ca Var-ld .

.

car

-* - . . r r

PL
12

2.4.1. Necessary Ada Type Normalizations

In Ada every constrained subtype is represented at runtime by a gubtype
descriptor. Normalizations are necessary because constrained subtypes are required
that are not explicitly represented in the source text. Example 2.2 illustrates this
point.

x glorp(1 .. 10);

Example 2.2a: Unnormalized Implicit Subtype Declaration

subtype Sanonl is glorp(1 .. 10).-
x anoni.

Example 2.2b: Example 2.2a with Subtype Explicit

Anonymous subtype normalization must be done for implicit subtype declarations in
all contexts, including array components and record components.

A more difficult and important type normalization involves normalizing array
types. Consider Example 2.3. The Ada Reference Manual jDoD83 p. 3-291 specifies
that all of these array declarations are semantically equivalent. The DIANA

* representation does not unify these different forms, even though the front end will
calculate the normalized array forms to do semantic analysis. Because the DIANA

:" representation is not allowed to contain the normalized forms, the back end must
recompute the information.

2.4.2. Summary of Normalizations Implemented

In the BAC implementation, normalizations were done to the DIANA structure
between the front end and the middle end (see Figure 1.1). The BAC normalization
phase normalized all array types and implicit subtypes. All occurrences of the
attribute 'RANGE were changed to the range 'FIRST .. 'LAST. Record aggregates,
which in the DIANA structure appear exactly as they do in the text, were normalized
to always appear in positional order. Similarly, named parameter lists were
normalized into positional order to make parameter passing easier. These
normalizations made the BAC middle end easier to implement.

•-7

a -W.r ! - dr - -W V U

.%*

13

type A is array (1 .. rl, 1 .. r2) of CompType(l 10).
an.A A.

Example 2.3a: First Form of Array Declaration

an.A array (0 rl, 1 .. r2) of Comp.Type(.. 10);

Example 2.3b: Second Form of Array Declaration

subtype Sanonl is integer range 1 . rl;
subtype $anon2 is integer range 1 r2;
subtype Sanon3 is Comp.Type(1 .. 10);

type Sanon4 is array (anoni range <). anon2 range <>)
of Sanon3;

subtype Sanon5 is anory ($anonl, ganon2)

an.A Sanon5; -- *sroo5 4e csL~ed 1 , A.s Ii
Example 2.3c: Normalized Form of Array Declaration

2.5. DIANA's Lack of Useful Information

Another problem with the DIANA representation is that is does not contain
information necessarily present during semantic analysis. Example 2.4 illustrates this
point.

type A is array (integer range <>) of integer;
x : constant A := (1, 2. 3);

Example 2.4: Important Type Information not Provided by DIANA

The declaration of x is legal. The initial value of the constant x provides the
constraint on the array type A. Thus, the subtype of x, A(I .. 3), implicit. 'Jowever,
the DIANA structure for the definition of x shows no that the type of x is A, and
shows no constraint even though every legal array variable in Ada must have a
constraint. To do correct semantic analysis, the actual subtype of x has to be

•.". ... •.- .. •.

'' -. 7- - 7- , 1-

14

computed, but the DIANA structure does not preserve this information.

A well designed symbol table would have also been helpful to back end writers.

As Example 2.4 demonstrates, the DIANA contains source structure information about
variables instead of semantic information. Information obtained from semantic
analysis (like an object's normalized type) is not summarized in any way.
Furthermore, there is no suggested symbol table organizational (like a hash table) that
would make semantic analysis more straightforward. Since DIANA is an entirely
abstract interface, this could be provided in the implementation, but such an
implementation would be quite sophisticated because it requires the access method of a
particular node to be sensitive to the node kind. The ABC implementation did not
take advantage of this abstraction because they wanted to use a uniform pointer
implementation of DIANA to gain efficiency [Wet82J. The result was that the symbol
table used for semantic checking in the ABC implementation is separate from the -
symbol table provided in standard DIANA (although they did define their new symbol
table as an extension of DIANA, in the same formalism used to define DIANA, Lamb's
Interface Description Language [Lam83]).

Quinn and Wetherell also defined Artemis, a DIANA-like intermediate
representation for Ada, that includes symbol table organization explicitly, and is
believed to be a more compact representation. [QuW83]

Runtime type representation is another implementation issue avoided by the
DIANA design. Because the DIANA designers did not want to advocate a particular
runtime type representation, DIANA does not contain offset attributes. The
argument against having an explicit symbol table organization and providing code
generation support (e.g. code attributes) is that DIANA is intended to be as simple as
possible and implementations can provide their own additional features. However, this
argument fails on two counts: first, if there is a need for a particular feature (like a
conventional symbol table) then everyone will have to provide one, and they will all be
different (and possibly redundant, as is the symbol table in the ABC); and second, if
DIANA is a stripped down intermediate form, then why is it so complex, especially
considering that much of the omitted support must be provided anyway. The Artemis
design provides attributes for elements of the symbol table that support code
generation, optimization, and debugging, and the representation is less complex.

Ii... -. . *

,;- . .. -. ? .i . :: i ,,, : -. % : . i .. , . -, , .- ,,- -.' -- : - -. ---. ,, - -. - . -, -. - .* .i- - ., *, . , - . . . -. .

,- .p.

CHAPTER 3

Experiences Representing Ad& with the C IR

3.1. Overview

The IR is a low level representation of C expressions. Expressions are
represented in a tree structure, and there are limited facilities for control in the form
of sequence operators. The IR contains constructs for most of the C operators, and
also allows explicit referencing of registers. This chapter describes the experiences we
had using the C IR as a low level representation for Ada. A possible alternative
representation is discussed, and the two representations are compared. Also,
unpredicted benefits of using the IR are presented. Finally, the actual suitability of
the IR for representing Ada is described.

3.2. Reasons for Choosing the IR Representation
The most important reasons for selecting the JR as the low level representation

for Ada were given in the introduction. The only other candidate considered was the .-
language C itself. The original Ada Breadboard Compiler generated C source code.
There are several advantages to using C as the target language. First, since the
compiler itself is written in C, debugging facilities available for compiler development
automatically are available for debugging the executable code of the compiler.
Second, because C is textual, it is easy to understand the code the compiler is
generating, and easier to find and fix bugs. Finally, because C and Ada have common
control structures, using C implies that control structure implementation is trivial.

There are also disadvantages to using C as the target language. A primary
drawback is the full C compilation required after the Ada compilation. With BAC
compilation speeds agonizingly glow anyway, this extra time just makes a bad thing
worse. Nevertheless, if using C would improve development time of the middle end
dramatically, such a trade-off might have been acceptable. It has turned out that the
IR represents a sufficiently large part of C that the ease of generating C source is
balanced by the availability of machine level operations in the IR. These operations
include accessing registers (the frame and stack pointers) and generating non-C
procedure calls (VAX jab). The greatest disadvantage of using the IR it that control
structure implementation (especially the case statement) is more difficult.
Implementing control structures is a minor part of the overall difficulty of the project
bowever The ease of understanding C made little difference in our implementation
becawtqt little time was spent debugging problems in the IR representation.

1F5

16

3.3. Other Benefits from Using the IR
An unforeseen benefit of using the IR representation was that the representation

could be easily optimized in simple ways. The IR representation explicitly contains all
addressing. Certain stylized forms of the IR, such as referencing with a constant
displacement off a register, can be converted directly into VAX addressing modes.
Also, constant folding and identity simplification is straightforward. The IR optimizer
is a small program (about 450 lines of C) that fits between the middle end and the
code generator in the BAC (see Figure 1.1). Overall, the optimizations carried out by
this code reduced the size of the IR representation more than one third in many cases.

Another advantage of the IR was that it allowed a fairly clean interface with the
middle end. The interface enforced a pre-order tree construction discipline with strict

stack operations. Currently, only 5 functions' form the entire interface between the
middle end and the IR implementation. Using an abstracted interface allowed
reimplementation of the IR representation on two occasions. The initial
implementation of the IR was a memory resident tree structure that was dumped to a
file when it was completely constructed. In an effort to speed up the middle end this
representation was discarded in favor of forcing the user to generate the nodes in a
pre-order fashion, and dumping each node to a file as soon as it is created. To achieve
this goal, the simple stack operation interface was implemented on top of the original
tree manipulation interface. This strategy avoided the overhead of the memory
allocation needed to represent the tree internally, with the disadvantage that none of
the tree nodes were available after they were created. Later, when optimization of the

expression trees was desired, another representation became necessary. This time the
IR trees for individual expressions were maintained in memory until the expression
was completed, and then the optimizer would be run on it before it was dumped to a
file. This organization has proved to be the most successful of the three.

3.4. Suitability of the ER for Representing Ada Programs

One Berkeley researcher commented that he saw representing Ada in the IR as
akin to trying to force a large object into a small space using a funnel. One might
wonder how well the IR fares in'representing Ada. Our experience has shown that the

- IR is quite suitable for this task. Because virtually any instruction sequence desired
can be created by combining the right IR nodes, the IR provides the flexibility of an
assembler representation. However, because it is somewhat strongly typed, provides
many operators as well as simple calling structures, and handles temporary register
allocation for the user, the IR makes the job of code generation considerably easier
than generating assembler directly. Finally, because the IR is relatively machine
independent for a certain class of architectures (like the VAX, M68000, etc.), using the

' IR allows implementors to retarget Ada compilers with less effort.

The runctions are: push.leaf, push.op, print.expr, ir-init, and push.dummy.least. The names
suggest their functions. Push.dummy.leaf is needed because a particular operator (PEXPR) always

- expects two operands, and sometimes they are both not necemary.

.*,.... ~**.... .71

17

We did have some problems with the IR representation. One fault is the
inflexibility of the calling convention used. Because function calls are embedded in
expression trees, the IR user has to be satisfied with the calling convention that the
code generator chooses to use. In the case of the code generator we use on the VAX,
procedure and function calls are done using calls. While this allows different
languages to do inter-language procedure calls because they have the same calling
conventions, the execution speed of the calls instruction is sufficiently slow that
another calling convention would be preferred.

Another problem with the IR is that its low level prohibits certain optimizations. .*-
These optimizations are impossible for several reasons. First, stack addresses are
represented explicitly in the IR, making dead variable elimination a much more
difficult problem. This particular optimization is of special interest because the
runtime type system in the BAC generates unused type descriptors that could
potentially be eliminated. Also, the IR has a node called FTEXT, which basically is a
pass-through node that generates whatever assembler text the user wants to place in
it. The existence of this node makes any sophisticated optimizations on the IR
virtually impossible, because the representation becomes more machine dependent, and
without knowing what code the FTEXT nodes generate, the optimizer must make

extremely conservative assumptions. It is clear that the IR was designed to be a
portable representation of C without the potential for sophisticated optimization.

A final criticism of the IR has to do with its current status. While it defines
nodes labeled SWITCH, FLOAT, and STRING, they are all unimplemented, and
produce errors when used. The intent of these nodes seems clear enough, and though
implementing the capabilities they imply is trivial, it is largely machine dependent,
and reduces the portability of the representation.

-.

.7 * -

- " -q-----

CHAPTER 4

Berkeley Ada Compiler Runtime Organization

4.1. Overview

This chapter contains the specific details about the organization of the runtime

" environment in the BAC implementation. The design rationale is given as well as
many specific examples to make the implementation understandable. First, the
structure of the runtime stack is given along with the reasons for the subroutine
linkage conventions. Next, the representation of the library, inner, and generic
packages is discussed. Following the package description is the description of the
runtime type representation, to which the majority of the chapter is devoted. Scalar,
real, array and record types are discussed. The decisions involved in the designing the
structure of record types are then presented. The end of the chapter addresses
specific implementation issues including representation of parameters, function return
values, slices, array aggregates and record aggregates.

4.2. Contents of a Stack Frame
In the BAC runtime system implementation, we chose to have 4 storage

allocation pools. They are:

(1) The runtime stack, from which subroutine local data is allocated, and in which
subroutine linkage takes place. This is the only pool with an interesting
structure.

(2) The statically allocated data space, where statically sized objects (such as string
literals, floating point literms, and, library package data) are allocated.

(3) The heap, a global pool of data used to allocate dynamic objects.

(4) The temporary stack, used to allocate temporary results that are dynamically
sized.

The BAC uses a stack frame structure compatible with the VAX calls instruction
IDEC811. This allows inter-ianguage compilation between Ada, C, Pascal, and
Fortran 77. The overall structure of the stack frame is shown in Figure 4.1. In
invoking an Ada subprogram, the calling subprogram pushes the appropriate
arguments onto the runtime stack, along with the number of arguments. The calls
instruction saves the state of the calling subprogram (the old frame pointer, argument
pointer, registers, etc.) on the stack. Then the called subroutine is instantiated, and
the space necessary for static local data is allocated. Finally, during the elaboration of
the declarations, space necessary for dynamic local data is allocated.

18

IL

199

JV

'.- 19 ;

previous 4----- old frame pointer

high addresses frame
* ~I

argument list

STACK arg count 4- argument pointer (ap)
FRAME <

saved registers

old arg ptr -'

stack i-- frame pointer (tp)

grows static link -J s
this

way

dynamic local data

low addresses
arg list, etc.

Figure 4.1: Contents of a Stack Frame

The objects allocated for a particular instantiation of a subprogram include local
constants, variables, type descriptors, exception handling information, and compiler
allocated temporaries. The exact structure of data and descriptor objects is described
below. Compiler allocated temporaries include case selectors, loop bounds, and things
that Ada semantics require must be computed once, but may be referenced multiple
times.

- . V . -. V..*

-. --.-. .i- r r r- r r - .r . .r .W -. -. . . •.••L• • , .-

'p'

IL

4.3. Representing Dynamic Objects in the Runtime Stack

The overall design strategy for representing dynamically sized objects is
illustrated well by the structure of a runtime stack frame. Consider Example 4.1.

procedure dyn is
length integer read. s. sove.Lengt&k.pr cedure;
dyn.arrl array (1 .. length) of integer;

dyn.arr2 array (-length •• length) of integer;

begin
... etc.

end;

Example 4.1: Sample Procedure containing a Dynamic Array

All objects are partitioned into static objects and dynamic objects. In this case, the
integer length, and the descriptors for the variables dyn arrl and dyn.arr2 are static
objects. Descriptors are a known fixed size. Static objects have a size known at
compile time, and can be assigned a fixed offset in the stack frame. Dynamic objects
(the data for variables dyn.arrl and dynarr2) cannot have a fixed offset because their

size varies between instantiations of the procedure dyn.1 For each dynamic object
represented, a word is allocated in the fixed part of the stack frame that contains an

offset into the dynamic part of the stack frame. This offset provides the location of
the particular dynamic object for a given instantiation. Figure 4.2 diagrams the
actual structure of the stack frame for the procedure dyn. A similar strategy is used

to represent dynamic records.

4.4. Subroutine Linkage in the Runtime Stack

The subroutine linkage convention used in the BAC matches that of the VAX
calls instruction. The parameters are first pushed onto the stack. Next, the calls
instruction saves the return address, old frame pointer, argument pointer, and the
registers specified by the register mask. The old frame pointer is the dynamic link
that provides access to the caller's stack frame. The ret instruction restores all the

saved registers, and deallocates the current stack frame. The only linkage feature of
Ada not provided by the calls instruction is the static link, the pointer to the
textually enclosing frame of a subprogram to allow up-level access to variables in outer
scopes.

The static link in the BAC design is provided by the calling program, and always
passed as the first argument in the argument list. Upon entry the static link is saved

in a local temporary, and stored in a register as well, to provide fast access to

'Actually, the data for variable dyn..varl always begins at the known last word of the static part of
the stack frame, but this optimixation only applie to the first dynamic object in a stack frame.

21

static link 4-- old frame pointerlength

high addresses
dyn.arrl descriptor

offset?oits . offset 4 v.o. of dyn.arrl
0 te I"

virtual I,.-

O__Ign _> dyn.arr2 descriptor3,n-arrl i-"

offset 4 v.o. of dyn.arr.2

stack data for dyn arrl

grows
this
way 4,

data for dyn.arr2

low addresses

Figure 4.2: Structure of Stack Frame for Example 4.1
''.

variables in the adjacent enclositig scope. The local copy of the static link is used for
up-level addressing to variables in scopes outside the adjacent enclosing one. A

possible enhancement to this design would place a pointer to the outermost scope in a
register permanently, thus allowing much quicker references to the outermost scope.
In analyzing 120,000 lines of Pazcal programs, Cook and Lee determined that more
than 97 of non-local variable references are made to variables in the outermost scope
[CoL821.

We decided to use static links rather than a display to reference non-local
variables. The greatest advantage of a display is that it allows equal access times to
objects in any scope. Static links in the worst case require time proportional to the
difference in nesting levels of the current scope and the scope of the object being I
referenced. We believe that the number of references to outer scopes was sufficiently

infrequent to outweigh the disadvantages of displays, discussed below. In addition, by
making the scopes most often referenced accessible through registers, almost all of the

-_

-- " " - - " -' "-' " "- =" "- h -' " J l " ' -' ' '-'
- ' ' ' ' .

-+ ' ' ' -- + ' ' " " " ' ' '" : ' ' . "., ." " ' .., ," - ,,

2°7 4 '.-,70

22

overhead from using static links is eliminated.

A major disadvantage of displays is that they require special action to be taken
during an exception. In the normal case, a subprogram will restore the old display
value before returning. An exception can be handled by a non-local handler (causing a
goto out of a scope). Because the flow of control is not through the standard return
mechanism, action must be taken to restore the display to its correct state. This
restoration can be done in the exception handler, but requires the stack to be
unwound. Some of the problems involved with stack unwinding in RIGEL2 are
described by Cortopassi [Cor8l]. The BAC static link implementation requires noI *t .ck unwinding.

Finally, using the display mechanism in conjunction with linkage to package
subprograms was unnecessarily complicated. The ABC implementation used displays
for up-level referencing, and maintained a separate package display to handle package
variable references [Rub82]. Implementing package references using static links is a
very simple and elegant process.

4.5. Package Representation

In Ada, packages create a syntactic guard that provides a useful tool for data
abstraction. In our implementation, several kinds of packages are of interest:

e Library packages-or outer packages-are packages declared as separate
program units. Library packages are accessed using the Ada with statement.
Since no scopes enclose library packages, static linkage for functions declared in
the package is not difficult to provide.

e Inner packages are packages declared within a compilation unit. Functions in
inner packages can access objects in scopes that textually enclose the package,
and so providing static linkage to these scopes is necessary.

• Generic packages are library or inner packages that are parametrized and allow
multiple separate instantiations. The current BAC does not implement generic
packages. Sharing code between instantiations of generic packages is an -_

important issue, and generic packages are discussed.

The following sections discuss the location of the data, the environment linkage, and
package instantiation for each of these three cases.

4.5.1. Library Package Representation

Because library package data is globally accessible to any compilation unit that
includes it using a with clause, library package data can be allocated in the static
data pool. Our implementation has not addressed the problem of where to put
dynamic data that is part of a library package declaration. The best place to put it is

RIGEL is a language developed at Berkeley that feiturin exception handling semantics very similar

to thoe found in Ads.

I7

23

in the heap where it will be allocated once and never deallocated. This feature remains
to be implemented, and differs from the technique of allocating dynamic objects after
all the static objects described above.

Another problem is how to provide the static linkage to subprograms in packages
called from outside the package. The only static environment needed by top-level
functions in a library package is the data in the package specification, and since the
location of that data is globally known, the static link in this case is irrelevant.

Library package instantiation (including the elaboration of the package body)
takes place prior to the elaboration of any of the program units that use the package,
and the instantiation order is determined using a partial dependency graph and a
linker provided in the ABC implementation.

4.5.2. Inner Package Representation
Inner packages are declared inside subprograms. In the BAC implementation,

storage for the static data of inner packages is allocated in the static part of the stack
frame of the enclosing subprogram. Storage for dynamic package data is allocated in
the dynamic part of the enclosing stack frame.

Example 4.2 illustrates a typical inner package. Providing the correct
environment to subprograms declared in the package, and called from outside the
package (like inner.F) is more difficult for inner packages. The strategy used in the
BAC is to make the package data nested in the enclosing scope appear exactly like a
stack frame. The static link of the package pseudo stack frame is the enclosing scope
of the frame. The runtime representation of the program in Example 4.2 is presented
in Figure 4.3. When a subroutine calls inner.F, the linkage is as follows: first the
caller knows that inner.F is a package function, and further knows the offset of the
package pseudo stack frame within the stack frame of the enclosing procedure
(enclose). This known address is pushed as the first argument (the static link) in the
call to inner.F. Because the package specification pseudo stack frame is organized as
shown in Figure 4.3, the pseudo stack frame looks just like another frame to inner.F.
The reference to local-var is up one level; the reference to enclose.varl is up two
levels, following the link from the pseudo stack frame to the frame of enclose; and the
reference to the outer.var follows the static link from the frame of enclose to the
scope of outervar.

The only additional thing that needs to be done is that the static nesting levels of
subprograms in the package need to start at a number one greater than the static
nesting level of the package. The nesting levels have to be changed because the
package specification pseudo stack frame is an interposing static level between the
frames of package subprograms and the frames of enclosing subprograms.

,A,

" II II
"

.iil" -- i ."

.9.

24

outer.var integer -- vsibLe iside package

procedare enclose is
enclose.varl integer; -- visbLe inside package

package inner is
local-var : integer;

function F return integer;

...etc.

end,

package body inner is

function F return integer is

begin
local-var = 1 - ference to header LocaL
enclose-varl = 2. -- reference inasde escLoeetg proc .-

outer-var = 3, -- reference outside encLosing proc
...etc.

end;
. etc.

end.
enclose var2 integer;

begin;
outer-var inner. -- caLL to Package fusction
-- etc.

end.

Example 4.2: Sample Inner Package

- I

25

high addresses R

_____-____ ..___ I ~ enclosing stack fp
.. - stack static link

stack
amn.afor local frame data

enclose
"- - package static link

localvar pseudo package frame

for inner

enclose var2
more local data

low addresses

Figure 4.3. Static Linkage for Elaboration of Inner Package Specification

4.5.3. Generic Package Representation

The most obvious implementation of generic packages involves doing the
equivalent of a macro expansion for each package instantiation. While this approach
is conceptually simple, it has serious drawbacks when a package is instantiated many
times. The alternative is for each package instantiation to share code. In this case it
is important that all instances of a package use the same code sequence to access
package objects. Consider Example 4.3. The issues this example highlights are the
location of the instantiated package's data, how package data is accessed, how package
procedures are called, and how up-level references from within the package are
implemented.

The strategy for allocating the generic package data is identical to the strategy
outlined for inner packages; the data is allocated in a pseudo stack frame in the stack
frame of the program unit in which the package is instantiated. This strategy is
illustrated in Figure 4.4. Note that the static link for the instantiation does not point
to the frame enclosing the program unit in which it is instantiated, but instead to the
frame enclosing the generic definition.

I .-' .

26

outer-var integer; -- vsibLe saside package

generic
package example is

... etc.
end;
package body example is

local.var integer;

function F return integer is
begin

local.var 10; -- referesce to package LocaL
outer-var 11; -- referesce outotde package def

end.
..etc.

begin.
... etc.

end.-

... etc.

package ne.example is new example.

Example 4.3: Sample Generic Package

Now consider a call to new.example.F. The static link passed to F must be the
address of the pseudo stack fi'ame. Once inside F, a reference to localvariable
involves following the static link passed from the stack frame of F to the pseudo stack
frame of new.example. A reference to outer.variable involves following the static link
from F into the pseudo stack frame for new example, and then following its static link
to the environment in which the generic example package was declared to correctly
reference outer-variable. Generic non-procedure parameters in this context are

.*. treated simply as package variables, and procedure parameters are handled in the
conventional style of passing the procedure's static link and its entry address.

4.8. Runtime Type Representation

Ada requires that type information be represented at runtime. In the BAC
implementation this runtime type information is stored in a runtime object called a
descriptor. There are various kinds of descriptors in the BAC implementation, and
they contain information such as range constraints, discriminant values, and offsets

- .II

27

high addresses

outer vcirt

stack frame

enclosing
generic der'n
of ezample

enclosing - - package static link
stack rame loeaLv~ar pseudo package frame
of new.ezample for newuezample

low addresses

Figure 4.4: Linkage for Instantiated Generic Package in Example 4.3

into data objects. Data objects in the BAC implementation consist of what is normally
considered the value of a particular object, such as the elements in an array, or the 7
components of a record. The format of descriptor and data objects will be described
in the following sections. Because the BAC implementation did not consider the
representation of fixed point types, they are not discussed here.

4.6.1. Consequences of Type Definitions

When a programmer declares a type in the BAC implementation, he conceptually
gets more than that. With each type definition three representation types are
potentially defined. They are: T.Sdesc, the descriptor type for type T; T.Sdata, the
proper data type for type T, and T.Sfull, which is a concatenation of the $desc and
Sdata types for type T. These types are not all meaningful for every type declaration.
The various types of Ada objects are as follows:

N.8

I

q.

+ I.
* A constrained variable or constant of type T is represented by an object of type ..-J

T$data.
.4

* A constrained subtype of type T is represented by an object of type T.$desc.

* An unconstrained subtype of type T is not represented at all at runtime. r
e The type T is not represented at all at runtime, except in a special case called

subtype records.

* An unconstrained record type of type T is represented by an object of type
T.$full.

9 An unconstrained array function return value is represented by a 4 byte pointer
to the virtual origin, and an object of type T.$full.

* An access type with a constrained base subtype is represented by a pointer to an
object of type T.Sdata.

e An access type with an unconstrained base type or subtype is represented by a
pointer to an object of type T.Sfull.

In the BAC implementation, there are four kinds of descriptors: scalar, real, array,
and record. All descriptors except record descriptors have a fixed format.

4.8.2. Scalar and Real Descriptors and Data

Scalar data (of enumeration and integer types and and subtypes) is represented
by 1, 2, or 4 byte quantities, whichever size will allow representation of the entire
range. Scalar descriptors are represented by two 4 byte quantities, which contain the
lower and upper bound of the range of the subtype.

Similarly, real numbers are represented with either 4 bytes (single precision, or
fBoat digits 7) or 8 bytes (double precision, or float digits 15). The descriptors for
constrained real subtypes contain two 8 byte real numbers, representing the lower and
upper values for the constraining range. Example 4.4 illustrates a typical Ada
program containing scalar and real values, and Figure 4.5 illustrates the stack frame
for Example 4.4.

I-+..+.- . F.

"- + .- .,'" ." " """" + +,... ,'-' "',."-"+.,",-",. , ,._.,i.,:,+, .?.- ,'. .+ . : .+ +i. + .. -i i+:i.i; ,.2., .,, +, . + V ..

*. 01

29

procedure scalar-real.example is

type color is (red. yellow, green, blue, purple, black);
subtype dark-color is color range blue .. black;

a.color : constant color := red;
a dark. color : dark- color;
subtype small.range is integer range 1 .. 150;
an.integer small.range;
a.big.integer i integer := 100000; 1
subtype real.range is float range 1.0 .. 3.0;
areal real.range;
a-float float;

begin

... etc.
end

Example 4.4: Procedure containing Scalar and Real Types

high addresses static link
blue........... ,i e dark-color dese.

red -a- color

stack 4- a.darkcolorstack _
grows sm all.range desc.
this 1.0

wa 4- aninteger
way 100000 4- abig.integer

1.00000
................................... real~range desc.

low addresses
4-- a.real
4-- a..float

Figure 4.5: Structure of Stack Frame for Example 4.4

• I

- - " -.. : " .-- k _. .. ' ,' ' " " "",L " '" " ""
* "

"
+ .

'" "
"

" """""'""" " " " " " "" "
•

"" " " " " "" "" " " "" "" "" " " ""

'.4

30

*- 4..3. Array Descriptors and Data .-

Array data in the BAC implementation is stored in contiguous space n row-
*'. major order. Array descriptors contain exactly three 4 byte numbers for each array

dimension. The three numbers are: the multiplier, lower bound and upper bound for U
each dimension of the array. Static arrays are allocated in the static part of the stack

_ - frame. Dynamic arrays are allocated in the dynamic part of the stack frame, and a 4
byte pointer is allocated in the static part of the frame which points to the virtual

*, origin of the array. In the BAC implementation a pointer to array data points to the
virtual origin of the array, and not the address of the first word of data (called the
data origin). Our implementation never stores the data origin anywhere, and its
.ralue is computed using the virtual origin and the information in the array descriptor.
The advantage of always using the virtual origin is that it makes array indexing
operations fast. The disadvantage of not storing the data origin somewhere is that
array copy operations require some recomputation.

One circumstance arises where arrays are represented slightly differently than the
representation described above. When functions return an unconstrained array type,
in addition to the descriptor and data (an object of type T.$full), the first word of the
object returned is the virtual origin of the array. Composite function return objects
are described below. Figure 4.8 illustrates the implementation of the procedure in
Example 4.5.

4.8.4. Record Descriptors and Data

Records have the most interesting runtime type representation. Each record
descriptor depends specifically on the declaration of the record itself. The BAC
implementation recognizes several kinds of objects that may be record components.
They are:

e A record discriminant, which is represented by a 4 byte integer in the record

descriptor.

e A statically-sized record component, such as an integer, float, access type, or
static array. These components are represented in the static portion of the
record data, and since their location in the record data is known at compile time,
they require no information in the record descriptor.

e A dynamically sized component that does not depend on the record
discriminants. These include dynamic arrays, and constrained records that
contain dynamic arrays. The data for such a component must be placed in the
dynamic portion of the record data. Since the offset of this data varies between
program instantiations, in addition to the data, the offset of the data in the
dynamic part of the record data is kept in the record descriptor.

e A dynamically sized component that does depend on record discriminants. Again
both records and arrays can fall into this category. Again the data for these
components is placed in the dynamic part of the record data. In the descriptor,

in addition to the offset of the data in the dynamic part, the descriptor of the

&:.

..

31

procedure array-.example is
type static-.array is array(1 . 10. 1 .. 20) of integer;-
al static-array;
n integer := eads-tatger;
type dynamic-.array is array(1 . n) of float;
a2 :dynami c-array,

begin . e c

end

Example 4.5: Sample Procedure containing Array Types

high addresses static link
rnult 1. 80

u.b. 1 =10 sai~ra ec
mult 2 4sttcarade.

stack Lb. 2 = I
grows............ ..

this jub -"

way 4

800 bytes al data

low addresses 1
multl= N
Lb. I = I) dynamic..array desc.
u. b. 1 = n >

offset 4- v.o. of a2 data

H ils 04 n ye a2 data
same word)nbye

Figure 4.6: Structure of Stack Frame for Example 4.5

W. -oV- r- V

32

component is also stored.

. An unconstrained component. These can only be records. Unconstrained records
are represented in records very much as they are in the stack frame, with an
object of type T.Sfull allocated in the static part of the record data.

Example 4.6 will serve as a model to facilitate our discussion of record descriptors and
data.

4.6.5. Structure of Record Descriptors

The structure of the record descriptor for Example 4.6 is presented in Figure 4.7.
The absolute value of the first component of every record descriptor is the size (in
bytes) of the record data. The size is used to avoid recomputation every time the data
is copied. The sign of the first component tells whether a particular descriptor is the
descriptor for a constrained object (sign is positive), or the descriptor for an
unconstrained object (sign is negative). This information is used to implement the
Ada 'CONSTRAINED attribute.

The next components of record descriptors are the record discriminants. All
discriminants are represented in the descriptor as 4 byte quantities. All records that
require descriptors have discriminants except a special case we call a subtype record.
A subtype record is an undiscriminated record that has components that are dynamic
objects. Subtype records are a special case because while normal record types only
need descriptors for constrained subtypes, subtype records have no discriminants and
cannot be constrained, yet they require a descriptor. Thus, subtype records are the
only types that are represented at runtime with a descriptor.

After all the discriminants in the descriptor, each record component that requires
representation in the descriptor has space allocated for it. Static objects require no
representation. Dynamic objects like string(1 .. m) and f(m) require that their offset
into the dynamic part of the record data be stored in the descriptor. The descriptors
for these objects remain constant during a particular subprogram activation, and are
allocated and initialized separately. Objects that are constrained by the record
discriminant (like string(1 .. rd) and f(rd)) require an offset because they are
dynamically sized, and they also require a descriptor. This descriptor is provided
because there is a potential need for the descriptor of any object, and the descriptor
for discriminated objects can vary during a subprogram instantiation.

4.6.6. Structure of Record Data
The strategy of representing record data is close to the strategy of allocating

data in the stack frame described earlier. The record data is divided into two
contiguous parts: the static part, and the dynamic part. All static components are
allocated in the static part of the record data, and all dynamically sized components
are allocated in the dynamic part of the record data. The chief difference between
data for records and data for a stack frame is that the offsets for the dynamic
components of a stack frame are allocated in the static part of the frame, and the
offsets for the dynamic components in the record data are allocated in the record

33

a constant read..4_osetast:

subtype rangel.to.3 is integer range 1 . 3;

type f (Id rangel.to.3 2) is record :"
fl : string(. fd);

Ilk

end record.

type r (rd rangelto3 = 1) is record

rl character;
r2 strxng(1 10);
r3 string(1 m);
r4 •(m).,
r5 strxng(1 rd);
r6 f(rd);"
r7 f"

end record;

Example 4.6: Example Record Type with Various Component Objects

high addresses size 4- sign tells cnstrd?
rd 4- discriminants

offset 4- v.o. for r3
offset 4- offset of r4

muIlt 4 NN.~ ~.. ... -...
l.b. = I desc for r5

...u.b. --- rd

offset 4- V .o. for r5
size

fd
mult =-4- mu ----- 4dese ror r6.................= de c-or r
Lb.,S.............................. .. o %

low addresses u.b. = rd
offset
offset 4 offset for r6

Figure 4.7: Structure of Record Descriptor for Type R in Example 4.6

-. . ..

34

* descriptor, not the record data.

With this in mind, Figure 4.8 should be self explanatory. The oniy -part of
Figure 4.8 that may be puzzling is the allocation of space in the static part of the
record data for unconstrained record object r7. This reflects the BAG approach to
representing unconstrained records both as components and as frame objects. An

* unconstrained object of type T is represented by an object of type T-S.full. A difficult
problem arises with unconstrained records because they can be assigned from any
object that has a legal value for its constraint. Implementations must handle the
assignment of a larger object to a smaller one.

Various solutions to this problem have been proposed, including keeping
unconstrained objects on the heap, and reallocating and copying if such an assignment

72 data (10 bytes)

...... r5 data (<-5 btye8)

staticr6 data (<-5 bytes)
record
data size

fd

U.b. = td

offset

77 data

r3 data

dynarnic
record
data r4 data

Figure 4.8: Structure of Record Data for Type R in Example 4.6

eL

35

is made. The solution the BAC adopted is to allocate space for the largest possible
discriminant value for each unconstrained record, and thus avoid having to reallocate
and copy. Objects can never exceed this compiler determined maximum size and so
can be allocated in the static part of the stack frame or record data.

This strategy has drawbacks. The Ada programmer must avoid unconstrained -
records that have potentially large discriminant values. In particular, the declaration
in Example 4.7 would cause the BAC implementation to raise the STORAGE.ERROR
exception. It is true that permitting programs like Example 4.7 will allow

programmers to create true dynamic array variables', however, the performance
disadvantages are high. We believe that if you give a user a feature, you expect him
to use it. As a case in point, extensive use of dynamic strings would cause severe
performance degradation, and we decided not to provide them. Furthermore, the Ada
designers specifically avoided putting unconstrained arrays into Ada because they felt
constrained array subtypes were sufficiently flexible that less efficient unconstrained
arrays were unnecessary. This is one Ada implementation issue whose correct answer
will become clearer after some experience.

4.6.7. Record Implementation Strategies

Because each record type will create descriptor and data objects with different
structures, the problem of initializing and utilizing record information is non-trivial.
The solution adopted in the BAC implementation is have the compiler create runtime
subprograms associated with each record type definition. We call these compiler-
provided functions thunks. These subprograms are used to determine the size of a
record object, initialize the descriptor of a record object, initialize a record object, and
create an aggregate record object. Because certain record types are statically sized, or
do not have descriptors, these thunks are not necessarily created.

type r (rd integer 5) is record
x string(1 id);

end record.

bad.var r.-

Example 4.7: Record Type where the BAC Implementation Fails FT

= Array variables in Ada are required to be of a constrained subtype, and thus their size cannot vary
during the instantiation of the subprogram in which they are declared. Array parameters can have an
unconstrained type, but the formal parameter is constrained during each call any constraint on the actual
parameter.

.-**.* -..' --..-. *'.

--.....). *..... .' ..-

38

The thunks for record types take as their parameters the discriminants of the
record type. In Ada, these discriminants can be used to constrain record component
subtypes, or used as the tag field for a variant record. The BAC implements both of
these uses, although the a variant record type requires defining a case statement in
each thunk created.

Record initialization requires another kind of compiler provided function.
Consider Example 4.8.

type r is record
a. b. c integer f(N) * (y)

end record;

Example 4.8: Record where Initialization Requires a JTHUNK

Because Ada semantics require re-evaluation of the initial value expression in a
component list, in this case the expression f(x) + g(y), this expression must be
packaged up in such a way that re-evaluation is efficient. The BAC approach to this
problem is to create a runtime function, called a jthunk, that can be called each time

the expression needs to be evaluated. Because initial values are common, and because
this technique is used to implement array and record aggregates, an efficient
implementation of jthunks is important. The BAC implements jthunks without using
the call, instruction, and instead has internal calling conventions that allow use of the
VAX job instruction.

A more complete description of each of the runtime thunks is given in appendix
A.

4.6.8. Reasons for Record Implementation Design Decisions

Several considerations affected the design of records. The first was the desire to
make the runtime representation simple and uniform, which in light of Ada's
parameterized records is not easy. We also sought to minimize the space overhead of
the runtime record implementation, and avoid distributed overhead for
undiscriminated records. Finally, we wanted to make runtime manipulation of records
and descriptors as efficient as possible.

The implementation described above has the property that every record
descriptor has a uniform structure. The greatest non-uniformity is the existence of
subtype records, which were handled as a special case. With the amount of uniformity .
present, the thunks necessary to initialize record variables and allocate and initialize
record aggregates were moderately easy to implement.

Minimizing space overhead was partially achieved by unifying all the descriptors
for objects of a given constrained subtype. By keeping track and knowing the location
of a particular descriptor at compile time, we reduced the overhead of associating a

:. ,',, ',-',-'.-.,-,-....,-.,-,-'.....","....'......,...'......,,........,...-'..... ,,.'...... .. ,....".-.-.. '. ,

IL

37

descriptor pointer with each object. The original ABC implementation allocated a
descriptor pointer with each object, and manipulated both descriptor and data every
time any object was referenced [Wet82]. The space and execution inefficiency of this
implementation was a convincing argument against it.

Another way our implementation has the potential to save space is through dead
variable elimination. We decided that we should layer the complexity of the code
generation analysis and that the middle end should blindly assume all descriptors will
be needed at runtime and allocate and initialize all of them. On the other hand, the
middle end substitutes a constant for a reference to a descriptor if the descriptor's
contents are known at compile time. Because of this substitution, many descriptors
that are allocated are never referenced. An optimizing code generator would detect
these dead descriptors and remove them. This removal implies that static arrays and
non-subtype undiscriminated records will have no descriptors at runtime. This
elimination achieves our goal of minimizing distributed overhead.

Our final goal was to improve execution speed. The implementation of Example
4.7 discussed above is one part of our solution. Another part is the use of offsets
instead of absolute addresses to implement record descriptors. By using offsets, copies

* to undiscriminated records can be carried out as a block, instead of copying a field at
a time.

4.7. Parameter Representation

Ada supports three kinds of parameters, in, out, and in out. The maindifference between out and in out parameters is a semantic one, that out parameters

cannot appear on the right-hand-side in any context. In this discussion, both out and
in out parameters will be referred to as out parameters. Also, because access types
in the BAC are represented with a 4 byte pointer, any discussion that applies to scalar
types will apply to access types. The semantics of Ada allow either copy-result or
pass-by-address parameter passing for in and out parameters. The BAC
implementation adopts a hybrid approach, using copy-result parameter passing for
scalar and floating point parameters, and using pass-by-address for composite object
parameters.

4.7.1. Scalar and Real Parameters
In parameters for both scalar and real types are very similar. The value of the

parameter is simply placed on the stack. Real parameters are somewhat unusual,
simply because they are always widened (converted to double precision) before they
are pushed.

Out parameters are implemented as a value-result mechanism, where both the
address and the value of the parameter are pushed onto the stack, and the value
location is used to store the intermediate parameter values as the called procedure
executes. When the procedure returns, the stored address is used to update the value
of the actual parameter. This action is compatible with Ada semantics, which require
correct programs to assume that in out and out parameters are implemented in this
way.

. -. . . , . .•- -.. - . . ." .' ; - . . ' -' ' - . -. . ,. '. .. - .. - . . -. . . . , -. . , , . . , - . ,.

IK.

38 -,

da4.7.2. Composite Object Parameters a o-y c

aru nArray and record parameters are implemented by pushing the address-of the,* object and referencing indirectly through it (pass-by-address). Unconstrained
i parameters are the most interesting composite object parameter. The semantics of

Ada state that formal unconstrained parameters are constrained by the actual .'
arguments at the point of the call. These semantics are implemented in the BAC by

passing a descriptor argument as well as the address of the data object of the actual
argument.

For in parameters, the descriptor argument is used for constraint checking inside
the called subprogram. For out parameters, the descriptor can actually be assigned
to, and is either used to make sure that no constraints were violated, or is copied back
to the descriptor of the actual argument.

4.8. Function Return Value Representation
The BAC implements return values of scalar, access, and real functions in the

traditional way. The result is placed in a register, or a register pair if it is a double
precision floating point. Return values of composite objects are represented by
allocating the object on the temporary stack and returning a pointer to it in a
register.

The strategy of using an auxiliary temporary stack for function returns was
adopted mainly for efficiency, because the nature of function values is mostly LIFO.
The only tricky thing about function value returns is what happens when an exception
is raised in a function that has been called and one of its arguments is a function value
for which temporary space has been allocated. In this case, the temporary stack
space may never be dealocated. The solution to this problem is to store with every
exception handler a word that points to the place in the temporary stack that is
guaranteed not to contain any usable function call results when the handler is entered.

A better strategy for statically sized function return values is to preallocate space
for them on the runtime stack before the function is invoked. This preallocation
avoids the necessity to deallocate them at a later time, and also avoids the exception
raising problem discussed above. This strategy only applies to staticly sized objects,
however, and the general strategy outlined above is necessary for dynamic objects. _

4.9. Implementation of Other Ada Features

Ada has language features that require an implementation outside the type
scheme that has already been described. These features include array slices, array
aggregates, and record aggregates.

4.9.1. Implementation of Array Slices
Array slices in Ada are one-dimensional array objects that share the exact array

data of the array being sliced. In the BAC slices are easily implemented by associating
a new descriptor with the sliced array's data. The slice range values become the
upper and lower bound of the descriptor. The BAC implementation allocates these

.1;

S-.'.',.','_,'_'k', .,'_,..-,' .'_. '_-. ,_' ." " " " "" '-." .L"_ '_. ,', ".-.--,-.. ..-.. . . .-..,.. . . .-. '..-.. '.....-,

. . ". , .0 . 32 _W WL I I ..

39

descriptors as compiler temporaries, and sets them up prior to executing code for the
statement in which they occur.

4.9.2. Implementation of Aggregates

Aggregates present many problems to an Ada implementor because they can
appear in different forms and contexts. Both record and array aggregates pose the re-
evaluation problem described earlier in the discussion of record initialization. The
expressions in them have a potential need for re-evaluation. This problem is solved in
a similar manner, with the creation of jthunks for each aggregate value. The
implementation of aggregates requires passing the addresses of these jthunks to an
aggregate creation routine, which allocates space, sets up a descriptor, and initializes
the aggregate.

4.9.3. Array Aggregates

Each dimension of an array aggregate can take on a distinct form, either
positional, statically named, or dynamically named. These are illustrated in Example
4.9. The strategy of the BAC is to normalize these forms so that the function that
initializes the aggregate only has to understand one form. This normalization requires
considerable analysis.

The analysis is described for the one dimensional case, and the multi-dimensional
- case is a simple extension. We first describe the normal form. Each aggregate is
'" initialized by a call to a runtime system routine. The parameters to this function

include the address of the aggregate data, the address of the aggregate descriptor, and
a set of tuples corresponding to the ranges of indices of the array where a particular
value is to be placed. The format of each tuple is an upper-bound, lower-bound pair
for each dimension, and the address of the jthunk to call to initialize all the elements

procedure aggregate is

type foo is array(1 .. 5) of integer;
a : integer := 5;

X.y.z • foo;
begin

X -" (-1. -2. -3. -4. -5) -- poeitiesaL aggregate
y (1 I 3 => 100, others => 102);

-- stateatLy saned aggregate
Z (1 .. a => 500);-- dy psteatLy seied aggregate

end;

Example 4.9: Possible Forms of Array Aggregates

• I.

- 'o

1A

40

in the specified range.

The major job of the middle end is to take the different forms specified in the
DIANA structure and normalize them. The positional aggregates are the most
complicated. The tuples for positional aggregates depend on the context of the
aggregate. In the simple case, each tuple would just indicate a single element of the
array. For example, the tuples for the first aggregate in Example 4.9 would be (1,1),
(2,2), (3,3), (4,4), and (5,5). The problem is that the lower bound of the tuples
depends on the context of the aggregate. In some cases the type of the aggregate is
not constrained which means the aggregate lower bound is not the lower bound of a
constrained array type (as is foo, in Example 4.9), but instead the lower bound of an
array base type (e.g. array (integer range <>) of integer). The point of this
discussion is to indicate that a number of special cases exist when determining the
bounds of positional aggregates. However, once the correct lower bound has been
established, the tuples are just placed sequentially in the parameter list. The only
other problem occurs when there is an others clause in the aggregate. To implement
this feature, the compiler just generates a range from the current index to the
aggregate upper bound.

Static named aggregates are similar to positional aggregates, except that they can
contain ranges, and alternation (e.g. I I 4 => f(x)). The alternation is normalized
into separate parts and sorted. The ranges (I .. 4) are treated as range tuples (1,4).
The only problem occurs when there is an others clause. The others clause fills in
any array indexes that have not been accounted for. Fortunately, this is not difficult
because the array index list must be known at compile time and is sorted.

The only dynamic expression allowed in an aggregate occurs when there is a
single expression for an array dimension (e.g. 1 .. m => g(y)). Because they may
only appear in this context, dynamic named expressions can be handled as a special
case.

4.9.4. Record Aggregates

Record aggregates are created in a manner similar to array aggregates. The
major difference is that because array descriptors and data are so regular, there is a
generic array aggregate set up function, while with records, which differ widely among
themselves, two different thunks are created with each record definition that
correspond to setting up the record aggregate's descriptor and data respectively.
Records aggregates have only named associations, and the use of others is more
severly restricted, therefore the structure of record aggregates is easily normalized in
the DIANA representation during the normalization phase.

m - . a D- . . .
'

CHAPTER 5

Conclusions

Conclusions will be presented in the following way. First, the experiences we had j
with DIANA and the C IR are summarized. Then the implications our runtime system
design goals had on the actual BAC implementation are discussed. Next, performance
measurements of the current BAC implementation are provided. With these figures

*. we give reasons why performance data of the BAC and the ABC middle ends cannot
be compared. Finally, the execution performance of Berkeley Pascal and the BAC is
compared.

*. 5.1. Conclusions about DIANA
Working with the DIANA representation was not a pleasant experience. The

* source reproducibility requirement of the DIANA design caused much of the DIANA
structure to be unnormalized, hence more complex, larger, and less usable by the back
end. In addition, DIANA is not particularly well designed for use by either the front I

. end or the back end because important features like the symbol table are poorly Z-.
represented. It is clear that the DIANA designers considered the environment tools
the most important users of DIANA, and gave its space efficiency and compiler

"" usability less consideration than they deserved.

S5.2. Conclusions about the Im
Using the IR was a good decision. Because the IR provides a flexible low level

representation that does not require the user to think about details such as register
allocation, it is convenient and easy to use. Perhaps the greatest fault in the IR is
that it is being used for more pqrposes than it was originally intended. The difference
between the success of the IR and the failure of DIANA is clear. The IR is a form that

* . was intended to ease retargeting C compilers to different architectures. It was not
". designed to be a low level representation for production quality compilers of many

languages. The reason that the IR is so successful is that its value has been
established through much experience with it. From its inception DIANA was designed

*to be a standard for Ada intermediate representations. However, this was decided
long before experience with the DIANA representation had shown one way or the
other that it is a good representation. The moral is that practice with any
representation is the only way to determine its true value.

6.3. Conclusions about the BAC Runtime System

The runtime system described in this document was designed to be an efficient
representation of the features necessary for a complete Ada runtime environment.
Because the system shares as much descriptor information as possible, it does not ..

41

4.~~~~ 4 -. .-. .

n~ ~ VW 4 r .~ ~ r r n -r 7 w -rrr-Yr

ij
, -%

42

provide uniform access techniques for an object's descriptor. This non-uniformity
means that the compiler has to be more intelligent about the context and type of a
particular object. Thus, our runtime system attempts to achieve efficient
representation at the cost of greater compiler complexity.

There are some problems with this approach. The increased complexity causes
the middle end to be even larger than it already has to be to implement all the

" features of Ada. Our implementation of the middle end is approximately 20,500 lines
of C source code, including the normalization phase and IR implementation. The Ada
Breadboard Compiler middle end, which has C as its target language, contained

* approximately 6200 lines of C'. Their effort was not intended to be of production
quality but the size difference is still significant. Since the middle end is the most

*. difficult part of an Ada compiler to retarget, an important part of its design should be
simplicity.

m Still, there are clear advantages to our runtime representation. Sharing
descriptors at runtime saves considerable stack space, and saves the execution time
spent initializing redundant descriptors. Using an optimizer capable of dead-variable
elimination, many of the descriptors that are present but not referenced will be
eliminated altogether. With this representation, any Ada 'ype declaration which
would be legal in Pascal (i.e. static arrays, and non-discriminated records) would
incur no runtime overhead not also present in the Pascal implementation. In this L
representation, none the overhead (type descriptors, thunks, jthunks, etc.) imposes a
distributed execution overhead on programs that do not use the complex features.

5.4. The Performance of the Berkeley Ada Compiler
Some useful comparisons can be made between the Berkeley Ada Compiler and

the Ada Breadboard Compiler. Due to the work of Murphy, the BAC DIANA
representation is much smaller than the ABC's representation. Comparative statistics
for a small test program2 are provided in Table 5.1 and Table 5.2, which were adapted
from [Mur84 pp.16-17]. Problems arise when one tries to compare the BAC and the
ABC middle ends. Because we received an early version of their middle end, which we
intended to reimplement, the state of the middle end we have for comparison is
incomplete. In addition, efforts at AT&T have more recently gone into building a
production compiler from scratch, so figures reflecting a complete version of their
middle end are impossible.

Nevertheless, in an effort to make a meaningful analysis of the quality of the code
generated by the BAC middle end, comparisons will be made with pe, the Berkeley
Unix Pascal compiler. The BAC compiles source to object code at approximately 180
lines per minute, which is 2.3 times slower than pe. While part of this poor
performance can be attributed to the complexity of DIANA, the middle end accounts
for almost a quarter of the total compile time.

This figure is somewhat suspect. See the discussion in the following section.
The program was the ubiquitous Punth program of Forest Baskett, upon which seemingly

thousands of analyses have unfortunately been based.

43

Puzzle Space Requirements

245 lines of Ada source
1635 input tokens (8 tokens/line)
3218 DIANA nodes (15 nodes/line)

1834 abstract syntax tree nodes
921 symbol table nodes

3073 sequences (list elements)

ABC BAC
size of DIANA 254,816 140,276 bytes
average node size 72 35 bytes
external DIANA file 232 140 Kbytes

Table 5.1: Compilation Space Requirements for the Puzzle Program

Puzzle Compile Times on a VAX 11/750
ABC BAC

front end 28.3 47.3 seconds
middle end - 20.7 seconds
back end - 24.8 seconds

total - 92.8 seconds

Table 5.2: Compilation Execution for the Puzzle Program

Table 5.3 contains a comparison of execution times for 8 small benchmark
programs. Perm generated all permutations of 7 objects. Towers solved the Towers of
Hanoi. Queens solved the 8 queens problem. IntMM and MM did an integer and real
matrix multiply, respectively. Puzzle has been introduced. Quick, Bubble, and Tree
were all sorting algorithms. FFT solved a fast Fourier transform. Because the
programs are so small, the significance of the comparison is questionable, but larger
programs written in both Pascal and Ada are not available. The table shows the
execution performance of the two compilers is comparable. The worst case for the
BAC implementation was Perm, which suffered because it called a 3 line assembler
function called Swap repeatedly. The overhead of passing the static link to the callee,
and setting up the static linkage was the cause of the poor performance. A suggested
modification of the simple static linkage model presented here would solve the
problem, but also considerably complicate the model.

%F

* i~1

44

Program Berkeley Berkeley

Pascal Ada
(sec) (sec)

Perm 2.7 3.6
Towers 2.8 3.5
Queens 1.8 1.0
IntMM 2.2 2.0
MM 2.7 2.4
Puzzle 12.9 8.7
Quick 1.7 1.8
Bubble 3.0 2.0
Tree 8.4 4.6
FFT 4.8 4.3
Total 40.8 33.9

Table 5.3. Comparison of Pascal and Ada Execution Times

We view the favorable comparison with a language as relatively simple as Pascal
as evidence that our runtime implementation was successful. In conclusion, we feel
that the runtime system suggested in this paper provides efficient execution time
performance with little distributed overhead, and offers a conceptually simple and
useful runtime model for Ada.

rk

€"a

-
"

.'

45 L
Appendix A: Thunks needed in the BAC Implementation

This appendix contains a list of the compiler defined functions needed in the
BAC runtime system. There are two classes of these functions, which I call thunks
and jthunks. A thunk is specifically needed to implement parametrized records. It
acts very much like a subroutine the user might have written, has its own local
storage, and uses the calls instruction in its invocation. Callers of thunks provide
their own lexical environment to the thunk so that it can access the necessary objects
correctly. This implementation was chosen because these particular functions are
called relatively infrequently. A jthunk is a function needed to implement specific Ada
semantics which require the recomputation of expressions. A compelling example of
the need for jthunks is given below.

procedure compel is
x array(1 .. 50000) of integer;

begin
(1 50000 => f(y));

end;

Example A.1: 50,000 Reasons for Efficient JTHUNK Implementation

Because Ada semantics require that f(y) be evaluated once for every element of the
array x, efficient execution of f(y) is very important. The case where f(y) is replaced
by a constant can be handled as a special case in any implementation, but the BAC
implementation of the general case is so efficient that special casing constants is almost
unnecessary.

Jthunks are implemented as pieces of code that the compiler branches to in order
to evaluate a particular expression. The caller of the jthunk has to reserve a space in
his stack frame for the address of the result of the jthunk. Thus the execution
overhead of re-evaluating an expression is simply the cost of pushing the pc on the

stack, and popping it off after the computation is over (Jsb and rob on the VAX), plus
the extra cost of indirection in referencing the result. Because of jthunks are
evaluated in the context of the caller they have the correct lexical environment.

THUNKS

All the thunks have as their first parameter the static link of the stack frame in
which they are called. Also note that all of the thunks defined have to account for the
case of a discriminated record whose discriminant is used as a variant. In this case,
the thunk has to evaluate the equivalent of a case statement to determine which case
is relevant.

V-.'

~' ~ r- - - - 11

.'"

46

rec. size
This thunk takes a parameterized record's discriminants, and returns thi size of
the data portion of the record. This particular information is placed in a field in
the record discriminant so that later uses will not require recomputation.
Undiscriminated, non-subtype records do not require rec.aize.

e. deac
rec.decc takes a parameterized record's discriminants, and the address of the
base of the record's descriptor. The purpose of this thunk is to fill in the values
of the descriptor given the discriminants. Consequently, rec.dese calls recasize.
Undiscriminated, non-subtype records do not require recdesc.

ree. init
This thunk takes the address of the record data that need to be initialized. It is
called to initialize the fields of a record that have initial values. Note that these
functions will call possibly ithunks to revaluate arguments as in example 4.7, and
will also potentially call other rec.init thunks. All records with initial values
require ree init.

ree.RDSU
RDSU stands for Record Descriptor Set-Up. This thunk initializes the descriptor
for a record aggregate. It takes as parameters the address of the descriptor, and
addresses of the jthunks that are evaluated to get the values of the discriminants.
All records require ree-RDS U.

-. tee. RASU

RASU stands for Record Aggregate Set-Up. This thunk initializes the data for a
record aggregate. It takes as parameters the address where the record aggregate
data will be placed, the address of the record descriptor, and the addresses of
jthunks that evaluate to the fields of the record. All records require ree.RAU.

JTHUNKS

aagg. ezpr
This jthunk is used to initialize array aggregates (aagg's) as in example A.1.

ragg.czpr
This jthunk is used to initialize record aggregate (ragg's) components. The
semantics of initialization of these is similar to array aggregates.

rinit, Cepr
This jthunk is used to initialize the components of a record that are declare with
the same initial value, as in example 4.7.

This is technically not true. If the compiler were to make a pan to determine whether any
aggregates existed of each particular record type, then it could avoid generating these thunks for records
for which there were no aggregates. This additional analysis seemed unneeessary.

47

References

[CoL821 R. P. Cook and I. Lee, "A Contextual Analysis of Pascal Programs",
Software-Practice ff Ezperience 12 (1982), 195-203.

[DEC81] Digital Equipment Corporation, VAX-11/780 Architecture Handbook,
Digital Equipment Corporation, 1981.

[Cor8l] J. R. Cortopassi, "RX, A RIGEL Interpreter", Master's Thesis, Computer
Science Division, EECS, UCB, Berkeley, CA, 1981.

[DoD83] U. S. Department of Defense, Military Standard - Ada Programming
Language, U. S. Government Printing Office, Washington, DC, 1983.
ANSI/MIL-STD- 1815A- 1983.

[GWE83] G. Goos and Win. A. Wulf, eds.; Arthur Evans, Jr. and Kenneth J. Butler,
rev., eds., Diana Reference Manual, Revision S, Tartan Laboratories,
Inc., Pittsburgh, PA, 1983.

[Hen84] R. R. Henry, "Graham-Glanville Code Generators", PhD Dissertation,
UCB/CSD 84/184, Computer Science Division, EECS, UCB, Berkeley, CA,
May 1984.

11ch79 t J. D. Ichbiah, "Preliminary Ada Reference Manual", SIGPLAN Notices
14, 6 (June 1979).

(HonSOl Honeywell, Inc., Formal Definition of the Ada Programming Language,
Cii Honeywell Bull, INRIA, 1980.

[Kes83] P. B. Kessler, The Intermediate Representation of the Portable C
Compiler as used by the Berkeley Pascal Compiler, Computer Science
Division, EECS, UCB, Berkeley, CA, April 1983. Unpublished Manuscript.

[Lam83] D. A. Lamb, "Sharing Intermediate Representations: The Interface
Description Language", PhD Dissertation, CMU-CS-83-129, Computer
Science Dpt., CMU, Pittsburgh, PA, May 1983.'

[Mur84] M. P. Murphy, "DIDI - Diana Implementation Designs and Decisions",
Master's Thesis, Computer Science Division, EECS, UCB, Berkeley, CA,
1984.

[Qui82] M. E. Quinn, The Ada Breadboard Compiler: The DIANA Package, Bell
Laboratories, Murray Hill, NJ, 1982. Internal memorandum.

[QuW831 M. E. Quinn and C. S. Wetherell, An Intermediate Representation for
the BTL Ada Compiler, Bell Laboratories, Murray Hill, NJ, 1983. Internal
memorandum.

[Rub82] D. H. Rubine, A Hybrid Ada Interpreter, Bell Laboratories, Murray Hill,
NJ, 1982. Internal memorandum.

(Wet82I C. S. Wetherell, The Ada Breadboard Compiler: An Overview, Bell
Laboratories, Murray Hill, NJ, 1982. Internal memorandum.

\..

_______a

